3.343 \(\int \frac{\sec ^3(c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=35 \[ \frac{2 i a \sec ^3(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

(((2*I)/3)*a*Sec[c + d*x]^3)/(d*(a + I*a*Tan[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0544807, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.038, Rules used = {3493} \[ \frac{2 i a \sec ^3(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((2*I)/3)*a*Sec[c + d*x]^3)/(d*(a + I*a*Tan[c + d*x])^(3/2))

Rule 3493

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*b*
(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1))/(f*m), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{\sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{2 i a \sec ^3(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.119705, size = 40, normalized size = 1.14 \[ \frac{2 (\tan (c+d x)+i) \sec (c+d x)}{3 d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(2*Sec[c + d*x]*(I + Tan[c + d*x]))/(3*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.298, size = 73, normalized size = 2.1 \begin{align*}{\frac{4\,i \left ( \cos \left ( dx+c \right ) \right ) ^{2}+4\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -2\,i}{3\,ad\cos \left ( dx+c \right ) }\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

2/3/d/a*(2*I*cos(d*x+c)^2+2*cos(d*x+c)*sin(d*x+c)-I)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 1.53481, size = 278, normalized size = 7.94 \begin{align*} -\frac{2 \,{\left (-i \, \sqrt{a} - \frac{2 \, \sqrt{a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{2 \, \sqrt{a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{i \, \sqrt{a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} \sqrt{\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1} \sqrt{\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1}}{3 \,{\left (a - \frac{2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} d \sqrt{-\frac{2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2/3*(-I*sqrt(a) - 2*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 2*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 +
 I*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*sqrt(sin(d*x + c)/(cos(d*x + c) + 1) + 1)*sqrt(sin(d*x + c)/(c
os(d*x + c) + 1) - 1)/((a - 2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*d
*sqrt(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1))

________________________________________________________________________________________

Fricas [B]  time = 1.99937, size = 153, normalized size = 4.37 \begin{align*} \frac{4 i \, \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}}{3 \,{\left (a d e^{\left (3 i \, d x + 3 i \, c\right )} + a d e^{\left (i \, d x + i \, c\right )}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

4/3*I*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c)/(a*d*e^(3*I*d*x + 3*I*c) + a*d*e^(I*d*x + I*c)
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (c + d x \right )}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**3/sqrt(a*(I*tan(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{3}}{\sqrt{i \, a \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^3/sqrt(I*a*tan(d*x + c) + a), x)